We've just launched our map. Add yourself by clicking here!


V4 Fume Extraction

  • This topic has 37 replies, 10 voices, and was last updated 2 years ago by Stan.
Suvda irismongolia

V4 Fume Extraction

24/06/2019 at 18:52

Hey community, I’m Suvda, chemical engineer working on PP V4 fume extraction. In this post, I will include information about the amount and contents of the fumes created. I found out which respirators are suitable to protect ourselves. Now, I am finding out which filters and ventilation design is suitable for us. In July, me and @pauldufour will build the fume extraction system. From August, we will test its efficiency with a fume detector and document the results. If you have any questions or recommendations, feel free to comment on this thread or send a message to me.


Fume formation
Fumes are created usually due to thermal, mechanical and oxidative degradation. The fumes are mainly made up of Volatile Organic Compounds (VOCs). VOCs are organic compounds that have boiling points roughly in the range of 50 to 250 °C. VOCs might be produced at 150-300C, due to the aging, long thermal exposure, intrinsic sensitivity and the interactions between additives and polymers.


Fume content and amount
In V4, we are working with HDPE, PP and PS. PS creates 8 times more fumes than PP and 17 times more fumes than PE. PP and PE are essentially refined wax, that’s why it has less fumes. PS fume contains mostly styrene and other similar aromatics. PP and HDPE mostly emit some alkane vapors. HDPE is the safest material in terms of fume creation. (picture below)

PS fume = 470 ± 100 mg/m3
PP fume = 59 ± 14 mg/m3
HDPE fume = 2.8 ± 2.4 mg/m3  [1]


The maximum 3-hour concentration of hydrocarbon content is 0.24 ppm, not to be exceeded for more than a year [2]. In conclusion, our biggest threat is styrene vapor formed from PS melting.


Respirator filter
We need ABEK1 6059 3M filters for filtering organic vapors which have boiling points above 65C, ammonia, acid and inorganic gases, this includes our fumes from melting plastic. These filters can be used for 6 hours continuously in one go, overall maximum of 50 hours and should be stored in airtight container while not in use. We used simple circles to indicate how many hours we have used the mask. Mask side is needed for particulate filter for preventing fine dust to enter the filter of the respirator.

Respirator parts:

Reusable half mask

Filter retainer

Mask side


Fume detector
VOC detector is needed to check efficiency of filter and ventilation. Photo-Ionization detector (PID) is the most commonly used technology to detect VOC content in the air. When air enters the end of a VOC meter, a UV light interacts with the molecules in the air. Organic compounds release positively charged ions when they pass through the light, which are then captured by a negatively charged plate producing measurable electrical current. For us UV lamp of 10.6eV is suitable.

At V4, we are planning to rent a PID detector for a week. Their primary use is for monitoring possible worker exposure to volatile VOCs.

Gas detection tubes are useful for detecting the presence of specific gases such as styrene.


LEV is Local Exhaust Ventilation which is a standard for industry to ventilate the toxic air efficiently.

Hood: contaminant cloud enters the LEV

Ducting: Conducts air and the contaminant from the hood to the discharge point.

Air cleaner: filters or cleans the extracted air.

Discharge: releases extracted air to a safe place

For temporary measure, we are using fume caddie for fume extraction of sheet press (pics below).

For VOCs the cleanest, easiest cleaning method is via activated carbon filter (ACF) especially granular ACF and fibrous ACF. Activated carbon has big surface area due to a lot of pores where VOC molecules can get trapped, thus filtered. ACF remove following VOCs very well: toluene, xylene, styrene, alcohol, benzene, decane, ethylbenzene, heptane and octane. And the following gases well: pentane, acetone, hexane [3]. Porosity is the most determining feature of activated carbons.

This week, we would like to find the suitable ACF to install above the extrusion machine. If you have any recommendations and suggestions, do not hesitate to send me a message 🙂


Resources used 

[1] Pollution characteristics and health risk assessment of VOCs emitted from different plastic solid waste

[2] Removal of VOCs from polluted air       

[3] Evaluation of GAC filters to remove VOCs







37 replies
7 subscribers
11 saved
sort on most likes

In reply to: V4 Fume Extraction

25/06/2019 at 08:59

Hi Suvda @irismongolia
Somewhat disturbing topic, but hey lets indeed not be naïve about the dangers of working with plastic(s)!
I have a question: Do you have ant data about using water filtration?
Simply said: blowing the exhaust air through a body of water. Pretty low-tech, but I heard some good things about it, if only for the dust particles…

In reply to: V4 Fume Extraction

25/06/2019 at 13:29

@donald – I’ve mentioned wet scrubbers in a post on another topic.

They can, indeed, be very simple (and cheap) to make – and can be very effective at particulate removal. I don’t know about VOC removal, though, as the scrubbing fluid has to be capable of absorbing the chemicals – and mustn’t create its own pollution by sending nasty vapours out of the chimney. 😉

Edit:  Been looking for suitable (cheap and non-toxic) fluids that could take VOCs out of the air in a wet scrubber – and some suggestions are:
– Vegetable Oil (any oil of low volatility)
– A water / surfactant solution (e.g. soap or detergent)
– An aqueous caustic solution (e.g. sodium hydroxide)
Of course, you are then faced with having to dispose of a liquid contaminated by VOCs…
I’m sure @irismongolia will be able to correct any of this, and offer some sensible advce 😉

There is a typical description of one here.


In reply to: V4 Fume Extraction

25/06/2019 at 21:59

…and here I was just thinking I could solve world polution by dunking the exhaust pipe into a bucket of water! 😉

Thank you for confirming it’s a valid idea.

so what about the VOC in wet scrubbers?
And I love this follow up question: “and/or what could be the best ‘solution’?”

Even if vinegar would only be a 75% improvement, not everybody can affort £1 an hour gas mask, so knowing this could already make a big difference.


In reply to: V4 Fume Extraction

25/06/2019 at 22:15

@donald I was going to mention acetic acid (vinegar) in the list, above, but could only find one reference (that was rather vague).

At least it isn’t as bad as the stuff I was having to mess about with 35 years ago – where the end result was inevitably a large tank of radioactive liquid 🙁

In reply to: V4 Fume Extraction

25/06/2019 at 23:20

Blower Design
For anyone faced with having to make an air extractor, instead of just buying one, this article (and video) is quite handy.  Actually, I think it is interesting for its own sake (I’ve been in awe of this guy’s workshop experiments for a few years).


In reply to: V4 Fume Extraction

26/06/2019 at 02:36

@irismongolia thank you for looking into this. I’m looking forward to your results.

The mg/m3 and ppm values may be a little misleading in that they apply to the workshop configurations tested in the referenced study. I expect that when you test the air near the extrusion machine in the large work volume in the Eindhoven workspace and compare it to the PP container workspace the results will be different. The relative comparison between the plastics should hold.

, looks like the filters can be found a bit cheaper. https://www.zoro.co.uk/shop/personal-protection-and-clothing/respirator-spares/6059-abek1-gas-and-vapour-cartridges-filters-pk-2/p/ZT1178484X .The Amazon price was for 4 pairs

In reply to: V4 Fume Extraction

26/06/2019 at 15:26


Thank you for the link!

4 pair: that would make more sense. Looked for this info, but did not see it. My bad.

In reply to: V4 Fume Extraction

26/06/2019 at 16:58

@donald @frogfall Thanks for the inputs. I have looked at wet scrubbers (also called absorption) and found that it is possible to use wet scrubbers (pic below), only concern is that the VOCs need to be at least slightly soluble in the scrubbing liquid (also called absorbent). Main VOC we want to filter, styrene, is not soluble in water. Water wet scrubbing work for dust, mold and pollens size of 2 micrometers.
One study I looked at, was scrubbing PS fumes with 2 stage scrubbing method. Sodium Hypochlorite was used for oxidizing the VOCs and to neutralize chlorine hydrogen peroxide was added. Secondary pollution control done by Sodium hydroxide. Thus, 90% of hot melt VOCs removed, except benzene compounds. Scrubbing solution cost USD 0.32 for 1000m3 gas. VOCs in hot melt exhaust consists of acrolein, acetone, benzene, ethyl benzene, styrene and alpha methyl styrene.
In my point of view, using a lot of chemicals is not a very environmentally friendly option, but wet scrubbing still needs to be explored more.

This guy made a DIY air filter using cyclonic wet scrubber for dust filtration, electrostatic precipitator for ultra fine particles like smoke and mist filtration and activated carbon for VOCs.
In my point of view, having a pre-filter for dust and activated carbon filter for VOCs seem to be the simplest solution. Buying bulk activated carbon and renewing it yourself is quite easy compared to wet scrubbers. But I might test both activated carbon and wet scrubbers. My main focus now is to find the most suitable activated carbon by considering the main properties: pore size, density, particle size

in terms of VOCs in the liquid, distillation could be used for VOC recovery, but I don’t think it will be economical. There isn’t much commercial systems that recover VOCs from the scrubbing liquid.

Thanks for your input. Yeah, that is why we want to rent a PID sensor for VOCs to detect it in real life.


In reply to: V4 Fume Extraction

26/06/2019 at 17:32

@irismongolia do you have a link for an easy DIY carbon reactivation process? The process described on the wiki page https://en.wikipedia.org/wiki/Activated_carbon#Reactivation_and_regeneration is high temperature and not DIY friendly. Is there a way to monitor carbon’s remaining effectiveness other than cumulative hours?

In reply to: V4 Fume Extraction

28/06/2019 at 12:31

@s2019 As you have mentioned one way to recover activated carbon is heat desorption and the other way is vacuum desorption at a sufficiently low vacuum pressure. Another reason why heat desorption is not suitable for us is that styrene monomers are highly temperature sensitive and will polymerize.

Spent carbon should be disposed when it contains 2% organics by weight, can be placed in a US municipal landfill (at $0.10/kg), based on current Federal regulations. If, instead, the spent carbon were classified as hazardous, this disposal cost (including transport) would increase to about $5.60/kg (disposal contractor quote). But our workshop are quite small so for sure it will be best if we regenerate in a DIY way. I will look into that.

In reply to: V4 Fume Extraction

28/06/2019 at 17:44

Yeah, I was going to mention that one of the problems of desorption is having somewhere to send the nasty stuff once it comes back out of the filter 😉

In reply to: V4 Fume Extraction

28/06/2019 at 17:49

Here’s a thought…
Would a packed bed of dried bran be an effective filter? It would have a large surface area, and be relatively cheap.
And after it was loaded with VOCs (including styrene), you could feed it to mealworms (see this thread)

In reply to: V4 Fume Extraction

28/06/2019 at 19:42

@frogfall that’s a great idea of wheat bran,  we can test with it once the fume detector arrives in late July. I am not sure if it will be as effective as carbon as it is not as porous as carbon, but we should try testing.
About the spent carbon, I was also thinking of feeding to the worms or the right strain of bacteria or fungi to make the spent activated carbon not chemically nasty. That would solve our problem in a very environmentally friendly way 🙂

In reply to: V4 Fume Extraction

28/06/2019 at 20:50

@irismongolia  Great – I look forward to seeing the results 😉
I guess it would also be possible to partly pyrolyse the bran to make it more active, if it could be done without using a lot of non-renewable energy in the process (e.g. maybe by using a solar oven).  But who knows, maybe raw wheat bran will be enough, if the air flow through the filter is handled sufficiently well.

In reply to: V4 Fume Extraction

28/06/2019 at 22:01

@irismongolia , There may be workshops that limit themselves to PE and PP. As you are coming up with a fume management approach, if you could identify what is needed just for those two and then the step up to PS.

I wonder how much the PE PP environment is different from a candle making shop for example. I guess the higher temperatures generate more VOC but on the other hand the candle makers have open pots of hot wax.

In reply to: V4 Fume Extraction

29/06/2019 at 14:40


They’re talking about feeding weedbran full of VOCs to your [Beyond Plastic] mealworms!
Tag, you’re it!

In reply to: V4 Fume Extraction

29/06/2019 at 14:47

Suvda @irismongolia
On a side note:

I know it’s not ‘fumes’, but it is a harmfull matter stream into which you might have an insight.

Could the microplastics created by washing the plastic be filtered out of the waste water using an sand filtration system?

This sand, once spend, could then be used to make bricks

In reply to: V4 Fume Extraction

29/06/2019 at 18:22

@irismongolia – regarding the bran, I see that the composition includes some oil, which might help with VOC retention.  Whether that would mean that rice bran would work better than wheat or rye bran, I don’t know.

– the V4 washing project already includes sand bed filtration. So they will eventually need to do something with the contaminated sand. Anything that locks it up, along with the contaminants/microplastics, has to be better than landfill.  I guess it could be mixed into conventional concrete – unless the microplastics just float to the surface… 😉

In reply to: V4 Fume Extraction

30/06/2019 at 13:14

Hi, a simple design for a wet scrubber I read about a few years ago, sounds similar to the ones mentioned:

Large plastic barrel; 100mm plastic pipe fume inlet cut through the side at the bottom, with a 90degree bend pointing down on the inside at the mid point of the barrel; 100mm outlet pipe of your choice cut into the lid, with inline fan to draw air upwards through the barrel.
Hose with garden sprinkler atatchment fitted upside-down on inside of lid. Outlet for waste water at bottom to separate sand and charcoal filter.
Fill barrel almost full with ping-pong balls or other small plastic items. This creates a huge surface area for fume gasses to be collected or neutralized.

In the example I read, they used a Lye solution through the sprinkler, but this may not be appropriate for plastic fumes.

In reply to: V4 Fume Extraction

30/06/2019 at 15:11

Hi @timberstar – there are lots of cheap ways to build wet scrubbers.  For the chemicals we are talking about here, PVC drainpipe & other fittings available in a typical DIY store would work fine. Upcycled PE drums – as you mentioned – would be fine too.

For random packing, the traditional method is to use Raschig Rings. These could be made by chopping up lengths of pipe. (Way back, when I worked in the nuclear industry, we used borosilcate glass Raschig rings in off-gas scrubbers – just as mentioned in the wikipedia article).

I suspect ‘Lye’ (sodium hydroxide) could work for at least some of the VOCs, as they might create a “soap reaction” (although that might not work at the low temperatures involved).  I guess it depends on how reactive the volatile hydrocarbons are.

I’ve even read one article that reckoned that the newly created soap can help to emulsify more VOCs than are involved in the original reaction. Hence, you could possibly use a soap solution from the start (safer than the hydroxide), and just rely on forming an emulsion, rather than a solution.

In reply to: V4 Fume Extraction

17/07/2019 at 15:22

Here, I would like to share some tests we have done:
Test Conditions
Date: 11 July 2019
Fan: Nederman1998, 2800-3400min-1, 200-240’, 380-420V 3~, 50Hz, 0.37kW, Serial number 521, Art N. 510521, 9840-00
– No pre-filter

Test 1: Attach in the sucking end of the centrifugal fan.

Result: very low flow at 130mm AC, 75mm AC, 37.5mm AC
Summary: don’t attach in the sucking end of fan.

Test 2: Attach in the blowing end of the centrifugal fan

Result: Activated carbon was moving too much when there was low amount of carbon, 75mm activated carbon pulling seemed to be enough, much better than Test 1. Could be suitable for extrusion but not enough for sheet press.

To make another filter that has another geometry of carbon bed shown in picture below.


In reply to: V4 Fume Extraction

03/08/2019 at 00:10

Hey all, I have some stuff which might be worth adding here based on building extraction for my laser cutter.

1) For cheap fans with high flow in the 200 CFM range and enough power to drive against a forward pressure look for a bouncy castle blower. Second hand in the UK these are about £20-40 but you can find them cheaper. They’re ace and perfect for moving large volumes against the pressure of a filter. Just don’t run them without a filter attached or they run so fast they try and tear themselves to pieces!

2) Activated carbon is a great way of filtering the VOCs but I found that from a laser even a deep bed gets saturated quickly. Look for bulk activated carbon called biochar which is sold as garden fertilizer. They take the activated carbon and load it with VOCs and then add it to the soil. Bacteria breakdown the VOCs and release the carbon into the soil. According to the guy I got my char off, it should be possible to incubate a strain of algae in the filter itself which would continually work to recharge the filter media. That, or they could swap filters now and then. I’d look to buddy up with a local farm and see if they’ll buy fully charged media as fertilizer. You need to be sure there are no heavy metals in the exhaust though or the veggies will grab those too!

Thermal desorb isn’t really an option or you’re just capturing nasties only to release them later. You could look to do thermal desorb into a CARS (Carbon algae reclamation system) though, pumping VOCs and CO2 through water with algae in so the algae breaks it down. Harvest algae, dry algae, burn algae, use waste heat to dry more algae etc. This is industrial scale though! You could have PP outlets buddy with hydroponics so that each PP workshop has an outlet for waste product which becomes new product. Big thinking circlular economy stuff though.

In reply to: V4 Fume Extraction

03/08/2019 at 02:28

I guess one question is how much would be exhausted outdoors without a filter. While pristine air is a goal, it would be interesting to compare the magnitudes in the test sample results to common sources (asphalt road on a hot day, etc.)

For some workspaces, staying on the carbon filter change regimen may be prohibitive.

In reply to: V4 Fume Extraction

05/08/2019 at 13:31

I think that is a good point Stan.

Near where I live there is a plastics factory that makes bathroom equipment (baths & shower trays) from glass reinforced polyester resin.  Sometimes it is possible to smell fumes from the resin in nearby residential streets – but the fumes are presumably within limits, and I’ve not heard of any problems.

Without an objective outside measurement of toxicity, it is difficult to know how much of the various volatile compounds really need to be filtered out.  It is impossible to go by aroma – as different people have different abilities to smell dilute chemicals. (e.g. I’m like a bloodhound, and smell everything. My partner has never once detected an odour from the plastics factory.)

In reply to: V4 Fume Extraction

23/08/2019 at 00:25

hi guys,  interesting thread,

wondering whats your advice for extracting/filtering acetic acid vapours?

we run a workshop working with acetic cure silicone and basically run a wind tunnel through it to deal with ventilation, but want to try to suck out and filter the vapour to reduce our exposure to the stuff.

do you guys have advice?

thank you!

In reply to: V4 Fume Extraction

29/08/2019 at 11:29

Is it possible to use the idea of the water filter with another liquid, like an oil? Do styrene monomers adhere to this?

In reply to: V4 Fume Extraction

30/08/2019 at 23:57

atapene – some kind of wet air scrubbing system should work, as Dirk mentions. But I’d start by using a weak solution of sodium bicabonate in water.  It should react with the acetic acid – and convert it to Sodium Acetate. This is non toxic, and shouldn’t cause any problems with disposal.

In reply to: V4 Fume Extraction

05/09/2019 at 18:23

@irismongolia , You mentioned you rented an industrial VOC sensor. If you plan to have that for a bit longer, perhaps your team could compare it to something like the low cost CCS811 sensor used in this project https://hackaday.com/2019/09/03/3d-printer-emission-monitor-quantifies-the-stench/ . If it provides useful information, that sensor is only around $20.

In reply to: V4 Fume Extraction

09/09/2019 at 15:36

@s2019 unfortunately my time at Precious Plastic V4 has ended. However you can check out a document of my fume tests with the PID detector I hope it is of use: https://docs.google.com/document/d/1Da_O60i6RFD4qfRhTQ7ApYcHpC08p_HAb3fRNehLI3c/edit 

In reply to: V4 Fume Extraction

09/09/2019 at 18:03

@irismongolia ,  Thank you for the link. It would be great if PP could post a summary/conclusion in this thread.

In general is it appropriate to compare your results to the safety criteria in your first post?


The maximum 3-hour concentration of hydrocarbon content is 0.24 ppm, not to be exceeded for more than a year [2].

Thank you for your work.

Viewing 30 replies - 1 through 30 (of 37 total)

You must be logged in to reply to this topic.

Support our projects on Patreon so we can keep developing 💪